1. 18086 Internal Structure. Pin description
2. Programming model. Effective Address. Flags
3. Memory Space organization. Segment and offset addressing scheme

The Intel 8086 high performance 16-bit CPU is available in three clock rates: 5, 8 and 10 MHz. The CPU is
implemented in N-Channel, depletion load, silicon gate technology (HMOS-Ill), and packaged in a 40-pin
CERDIP or plastic package. The 8086 operates in both single processor and multiple processor configurations
to achieve high performance levels.

Direct Addressing Capability 1 MByte

of Memory

Architecture Designed for Powerful
Assembly Language and Efficient High
Level Languages

14 Word, by 16-Bit Register Set with
Symmetrical Operations

24 Operand Addressing Modes
Bit, Byte, Word, and Block Operations

8 and 16-Bit Signed and Unsigned
Arithmetic in Binary or Decimal
Including Multiply and Divide

Architecture of 8086

The following diagram depicts the architecture of a 8086 Microprocessor —

MEMORY
INTERFACE

m Range of Clock Rates:

5 MHz for 8086,
8 MHz for 8086-2,

10 MHz for 8086-1
MULTIBUS System Compatible

Interface

Available in EXPRESS
— Standard Temperature Range
— Extended Temperature Range

Available in 40-Lead Cerdip and Plastic

Package

lr -- s — — ———— -
i C-8US ﬂ :
| |
I [|
I s INSTRUCTION |
i STREAM |
: 4 BYTE |
| 3 QUEUE |
I 2 |
I L '
: |
| g R S NEGR D RN DI S _—
i | '
| | l
| I :
: | CONTROL |
. [SYSTEM |
fouiiacessen o] ol s e i e e i
* :
I y .
| &V X A-BUS |
: I
| |
' :
| AN AL |
: 8H BL |
l CH cL ARITHMETIC |
| OM DL LOGIC uNIT :
| sp
| BP ; | B A :
: S| | ‘) i
0l ! |
| OPE RANDS i
: FLAGS J I

Fig.1 8086 Architecture

1

8086 Microprocessor is divided into two functional units, i.e., EU (Execution Unit) and BIU (Bus
Interface Unit).

EU (Execution Unit)

Execution unit gives instructions to BIU stating from where to fetch the data and then decode and
execute those instructions. Its function is to control operations on data using the instruction decoder &
ALU. EU has no direct connection with system buses as shown in the above figure, it performs operations
over data through BIU.

Let us now discuss the functional parts of 8086 microprocessors.

ALU
It handles all arithmetic and logical operations, like +, —, %, /, OR, AND, NOT operations.

Flag Register

It is a 16-bit register that behaves like a flip-flop, i.e. it changes its status according to the result
stored in the accumulator. It has 9 flags and they are divided into 2 groups — Conditional Flags and
Control Flags.

11|11 |OF|DF|IF|TF|SF|ZF|O|AF|O|PF|1]CF

Flags register

Conditional Flags
It represents the result of the last arithmetic or logical instruction executed. Following is the list of
conditional flags —

« Overflow Flag (OF) - set if the result is too large positive number, or is too small negative
number to fit into destination operand.

« Direction Flag (DF) - if set then string manipulation instructions will auto-decrement index
registers. If cleared then the index registers will be auto-incremented.

« Interrupt-enable Flag (IF) - setting this bit enables maskable interrupts.

« Single-step Flag (TF) - if set then single-step interrupt will occur after the next instruction.

« Sign Flag (SF) - set if the most significant bit of the result is set.

o Zero Flag (ZF) - set if the result is zero.

« Auxiliary carry Flag (AF) - set if there was a carry from or borrow to bits 0-3 in the AL
register.

« Parity Flag (PF) - set if parity (the number of "1" bits) in the low-order byte of the result is
even.

« Carry Flag (CF) - set if there was a carry from or borrow to the most significant bit during
last result calculation.

Control Flags
Control flags controls the operations of the execution unit. Following is the list of control flags —

e Trap flag — It is used for single step control and allows the user to execute one instruction
at a time for debugging. If it is set, then the program can be run in a single step mode.

o Interrupt flag — It is an interrupt enable/disable flag, i.e. used to allow/prohibit the
interruption of a program. It is set to 1 for interrupt enabled condition and set to O for interrupt
disabled condition.

e Direction flag — It is used in string operation. As the name suggests when it is set then
string bytes are accessed from the higher memory address to the lower memory address and vice-
a-versa.

General purpose register
There are 8 general purpose registers, i.e., AH, AL, BH, BL, CH, CL, DH, and DL. These registers
can be used individually to store 8-bit data and can be used in pairs to store 16bit data. The valid register
pairs are AH and AL, BH and BL, CH and CL, and DH and DL. It is referred to the AX, BX, CX, and
DX respectively.
o AX register — It is also known as accumulator register. It is used to store operands for
arithmetic operations.
e BX register — It is used as a base register. It is used to store the starting base address of the
memory area within the data segment.
e CX register — It is referred to as counter. It is used in loop instruction to store the loop
counter.
e DX register — This register is used to hold I/O port address for I/O instruction.

BIU (Bus Interface Unit)

BIU takes care of all data and addresses transfers on the buses for the EU like sending addresses,
fetching instructions from the memory, reading data from the ports and the memory as well as writing
data to the ports and the memory. EU has no direction connection with System Buses so this is possible
with the BIU. EU and BIU are connected with the Internal Bus.

It has the following functional parts —

e Instruction queue — BIU contains the instruction queue. BIU gets upto 6 bytes of next
instructions and stores them in the instruction queue. When EU executes instructions and is ready for its
next instruction, then it simply reads the instruction from this instruction queue resulting in increased
execution speed.

« Fetching the next instruction while the current instruction executes is called pipelining.

« Segment register — BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the addresses of
instructions and data in memory, which are used by the processor to access memory locations. It also
contains 1 pointer register IP, which holds the address of the next instruction to executed by the EU.

Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four
different 64 KB segments for instructions, stack, data and extra data. To specify where in 1 MB of
processor memory these 4 segments are located the processor uses four segment registers:

Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor
instructions. The processor uses CS segment for all accesses to instructions referenced by instruction
pointer (IP) register. CS register cannot be changed directly. The CS register is automatically updated
during far jump, far call and far return instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program stack.
By default, the processor assumes that all data referenced by the stack pointer (SP) and base pointer (BP)
registers is located in the stack segment. SS register can be changed directly using POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program data. By
default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX) and index
register (SI, DI) is located in the data segment. DS register can be changed directly using POP and LDS
instructions.

Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually with program
data. By default, the processor assumes that the DI register references the ES segment in string
manipulation instructions. ES register can be changed directly using POP and LES instructions.

It is possible to change default segments used by general and index registers by prefixing
instructions with a CS, SS, DS or ES prefix.

All general registers of the 8088 microprocessor can be used for arithmetic and logic operations.
The general registers are:

Accumulator register consists of 2 8-bit registers AL and AH, which can be combined together and
used as a 16-bit register AX. AL in this case contains the low-order byte of the word, and AH contains the
high-order byte. Accumulator can be used for 1/0 operations and string manipulation.

Base register consists of 2 8-bit registers BL and BH, which can be combined together and used as
a 16-bit register BX. BL in this case contains the low-order byte of the word, and BH contains the high-
order byte. BX register usually contains a data pointer used for based, based indexed or register indirect
addressing.

Count register consists of 2 8-bit registers CL and CH, which can be combined together and used
as a 16-bit register CX. When combined, CL register contains the low-order byte of the word, and CH
contains the high-order byte. Count register can be used as a counter in string manipulation and
shift/rotate instructions.

Data register consists of 2 8-bit registers DL and DH, which can be combined together and used as
a 16-bit register DX. When combined, DL register contains the low-order byte of the word, and DH
contains the high-order byte. Data register can be used as a port number in I/O operations. In integer 32-
bit multiply and divide instruction the DX register contains high-order word of the initial or resulting
number.

The following registers are both general and index registers:

Stack Pointer (SP) is a 16-bit register pointing to program stack.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is usually used
for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. Sl is used for indexed, based indexed and register indirect
addressing, as well as a source data address in string manipulation instructions.

Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and register
indirect addressing, as well as a destination data address in string manipulation instructions.

Other registers:

Instruction Pointer (IP) is a 16-bit register.

Effective address. Memory organization and addressing

Program, data and stack memories occupy the same memory space. The total addressable memory
size is 1IMB. As the most of the processor instructions use 16-bit pointers the processor can effectively
address only 64 KB of memory. To access memory outside of 64 KB the CPU uses special segment
registers to specify where the code, stack and data 64 KB segments are positioned within 1 MB of
memory (see the "Registers” section below).

16-bit pointers and data are stored as:
address: low-order byte
address+1: high-order byte

32-bit addresses are stored in "segment:offset” format as:
address+0: low-order byte of segment
address+1: high-order byte of segment
address+2: low-order byte of offset
address+3: high-order byte of offset

Effective /Physical memory address pointed by segment:offset pair is calculated as:
address = (<segment> * 16) + <offset>

Program memory - program can be located anywhere in memory. Jump and call instructions can
be used for short jumps within currently selected 64 KB code segment, as well as for far jumps anywhere
within 1 MB of memory. All conditional jump instructions can be used to jump within approximately
+127 - -127 bytes from current instruction.

Data memory - the processor can access data in any one out of 4 available segments, which limits
the size of accessible memory to 256 KB (if all four segments point to different 64 KB blocks). Accessing
data from the Data, Code, Stack or Extra segments can be usually done by prefixing instructions with the
DS:, CS:, SS: or ES: (some registers and instructions by default may use the ES or SS segments instead of
DS segment).

Word data can be located at odd or even byte boundaries. The processor uses two memory accesses

to read 16-bit words.
Stack memory can be placed anywhere in memory.

Reserved locations:

« 0000h - 03FFh are reserved for interrupt vectors. Each interrupt vector is a 32-bit pointer in

format segment:offset.

e FFFFOh - FFFFFh - after RESET the processor always starts program execution at the

FFFFOh address.

8086 pin Diagram

GND 11 4 ' vCC
ADy,]2 3 [ADy
P P 8 [AvS,
AD,y (1 4 2 [ass,
ADy ;;is %) AwSg
ADyo [6 35] AwSy
AD, (17 M BHES,
AD, (18 33 T MNaX
AD, (19 2 77 R
AD, [10 8ces 3 7] ROGT,
ADg % %] ROGT,
AD, [12 29] LOCK
ADy 13 28 8§
AD, W 27 S
AD, (118 20]S
AD, (16 25] Qs
N v 24 ! CS,
WNTR 18 23 |) TEst
X e 22 || READY

ano (] 20 21] RESET

Fig.2 8086 Pinout

Power supply and frequency signals

(MOLD)
(NLOA)

o)
(oT#)
(DEN)
(ALE)

It uses 5V DC supply at VCC pin 40, and uses ground at VVSS pin 1 and 20 for its operation.

Clock signal

Clock signal is provided through Pin-19. It provides timing to the processor for operations. Its

frequency is different for different versions, i.e. 5MHz, 8MHz and 10MHz.

Address/data bus

ADO0-AD15. These are 16 address/data bus. ADO-AD7 carries low order byte data and ADS8AD15
carries higher order byte data. During the first clock cycle, it carries 16-bit address and after that it carries

16-bit data.

Address/status bus
A16-A19/S3-S6. These are the 4 address/status buses. During the first clock cycle, it carries 4-bit
address and later it carries status signals.

S7/BHE
BHE stands for Bus High Enable. It is available at pin 34 and used to indicate the transfer of data
using data bus D8-D15. This signal is low during the first clock cycle, thereafter it is active.

Read(\overline{RD})
It is available at pin 32 and is used to read signal for Read operation.

Ready

It is available at pin 22. It is an acknowledgement signal from 1/O devices that data is transferred.
It is an active high signal. When it is high, it indicates that the device is ready to transfer data. When it is
low, it indicates wait state.

RESET
It is available at pin 21 and is used to restart the execution. It causes the processor to immediately
terminate its present activity. This signal is active high for the first 4 clock cycles to RESET the
microprocessor.

INTR
It is available at pin 18. It is an interrupt request signal, which is sampled during the last clock
cycle of each instruction to determine if the processor considered this as an interrupt or not.

NMI
It stands for non-maskable interrupt and is available at pin 17. It is an edge triggered input, which
causes an interrupt request to the microprocessor.

\overline{TEST}
This signal is like wait state and is available at pin 23. When this signal is high, then the processor
has to wait for IDLE state, else the execution continues.

MN/\overline{MX}
It stands for Minimum/Maximum and is available at pin 33. It indicates what mode the processor is
to operate in; when it is high, it works in the minimum mode and vice-aversa.

INTA
It is an interrupt acknowledgement signal and id available at pin 24. When the microprocessor
receives this signal, it acknowledges the interrupt.

ALE

It stands for address enable latch and is available at pin 25. A positive pulse is generated each time
the processor begins any operation. This signal indicates the availability of a valid address on the
address/data lines.

DEN
It stands for Data Enable and is available at pin 26. It is used to enable Transreceiver 8286. The
transreceiver is a device used to separate data from the address/data bus.

DT/R
It stands for Data Transmit/Receive signal and is available at pin 27. It decides the direction of data
flow through the transreceiver. When it is high, data is transmitted out and vice-a-versa.

M/10
This signal is used to distinguish between memory and 1/O operations. When it is high, it indicates
I/0O operation and when it is low indicates the memory operation. It is available at pin 28.

WR
It stands for write signal and is available at pin 29. It is used to write the data into the memory or
the output device depending on the status of M/IO signal.

HLDA
It stands for Hold Acknowledgement signal and is available at pin 30. This signal acknowledges
the HOLD signal.

HOLD
This signal indicates to the processor that external devices are requesting to access the
address/data buses. It is available at pin 31.

QS1 and QSO
These are queue status signals and are available at pin 24 and 25. These signals provide the status of

instruction queue. Their conditions are shown in the following table —

QSO QS1 Status

0 0 No operation

0 1 First byte of opcode from the queue

1 0 Empty the queue

1 1 Subsequent byte from the queue

S0, S1, S2
These are the status signals that provide the status of operation, which is used by the Bus Controller

8288 to generate memory & 1/0 control signals. These are available at pin 26, 27, and 28. Following is
the table showing their status —

S2 S1 SO Status
0 Interrupt acknowledgement
I/0 Read
I/O Write
Halt
Opcode fetch
Memory read
Memory write
Passive

PR RPRRPRPOOOO
PP OORRFR OO
POROROR

LOCK
When this signal is active, it indicates to the other processors not to ask the CPU to leave the
system bus. It is activated using the LOCK prefix on any instruction and is available at pin 29.

RQ/GT1 and RQ/GTO
These are the Request/Grant signals used by the other processors requesting the CPU to release the
system bus. When the signal is received by CPU, then it sends acknowledgment. RQ/GTO has a higher
priority than RQ/GTL.

Memory Space organization. Segment and offset addressing scheme

Real mode memory

FFFFF
fh/_
/‘-_./-
1FFFF
1F000 Offset = FOO0
64K-byte
segment
Segment register
10000 - Jl 1000
00000

Fig. 2-3 Segment and offset addressing scheme

Segments and Offsets

A combination of a segment address and an offset address access a memory location in the real
mode. All real mode memory addresses consist of a segment address plus an offset address. The
segment address, located within one of the segment registers, defines the beginning address of
any 64K-byte memory segment. The offset address selects any location within the 64K-byte
memory segment. Figure 2-3 shows how the segment plus offset addressing scheme selects a
memory location. This illustration shows a memory segment that begins at location 10000H and
ends at location |FFFFH—64K bytes in length. It also shows how an offset, sometimes called a

displacement, of FOOOH selects location 1FOOOH in the memory system. Note that the offset or
displacement is the distance above the start of the segment.

The segment register in Figure 2-3 contains a 1000H, yet it addresses a starting segment at
location 10000H. In the real mode, each segment register is internally appended with a OH on its
rightmost end. This forms a 20-bit memory address, allowing it to access the start of a segment
at any 16-byte boundary within the first IM byte of memory. This is required in the micro-
processor to generate a 20-bit memory address. For example, if a segment register contains a
1200H, it addresses a 64K-byte memory segment beginning at location 12000H. Likewise, if a
segment register contains a 1201H, it addresses a memory segment beginning at location
12010H. Because of the internally appended OH, real mode segments can only begin at a 16-byte
boundary in the memory system. This 16-byte boundary is often called a paragraph.

Because a real mode segment of memory is 64K in length, once the beginning address is
known, the ending address is found by adding FFFFH. For example, if a segment register con-
tains 3000H, the first address of the segment is 30000H and the last address is 30000H + FFFFH
or 3FFFFH. Table 2-1 shows several examples of segment register contents and the starting and
ending addresses of the memory segments selected by each segment address.

The offset address is added to the start of the segment to address a memory location in the
memory segment. For example, if the segment address is 1000H and the offset address is 2000H,
the microprocessor addresses memory location 12000H. The segment and offset address is
sometimes written as 1000:2000 for a segment address of 1000H with an offset of 2000H.

8

—— FFFFEH
L } CODE SEGMENT
4 xxXx0OH
l- STACK SEGMENT
+ OFFSET '
SEGMENT
MSB]
REGISTER FILE WORD { X33 DATA SEGMENT
Cs — BYTE l
S§
DS
ES T A
EXTRA DATA SEGMENT
T——— y0000H

Fig.3 8086 Memory organization

FUNCTIONAL DESCRIPTION

Memory Organization

The processor provides a 20-bit address to memory
which locates the byte being referenced. The memo-
ry is organized as a linear array of up to 1 million
bytes, addressed as 00000(H) to FFFFF(H). The
memory is logically divided into code, data, exira
data, and stack segments of up to 64K bytes each,
with each segment falling on 16-byte boundaries
(See Figure 3).

All memory references are made relative to base ad-
dresses contained in high speed segment registers.
The segment types were chosen based on the ad-

dressing needs of programs. The segment register
to be selected is automatically chosen according to
the rules of the following table. All information in one
segment type share the same logical attributes (e.g.
code or data). By structuring memory into relocat-
able areas of similar characteristics and by automati-
cally selecting segment registers, programs are
shorter, faster, and more structured.

Word (16-bit) operands can be located on even or
odd address boundaries. For address and data oper-
ands, the least significant byte of the word is stored
in the lower valued address location and the most
significant byte in the next higher address location.
The BIU will automatically execute two fetch or write
cycles for 16-bit operands.

Memory Segment .
Reference Used Register Used Segment Selection Rule

Instructions CODE (CS) Automatic with all instruction prefetch.

Stack STACK (SS) All stack pushes and pops. Memory references
relative to BP base register except data references.

Local Data DATA (DS) Data references when: relative to stack, destination
of string operation, or explicity overridden.

External (Global) Data EXTRA (ES) Destination of string operations: Explicitly selected
using a segment override.

Certain locations in memory are reserved for specific
CPU operations (See Figure 4). Locations from ad-
dresses FFFFOH through FFFFFH are reserved for
operations including a jump to the initial system ini-
tialization routine. Following RESET, the CPU will al-
ways begin execution at location FFFFOH where the
jump must be located. Locations 00000H through
003FFH are reserved for interrupt operations. Four-
byte pointers consisting of a 16-bit segment address
and a 16-bit offset address direct program flow to
one of the 256 possible interrupt service routines.
The pointer elements are assumed to have been
stored at their respective places in reserved memory
prior to the occurrence of interrupts.

Certain locations in memory are reserved for specific
CPU operations (see Figure 3b). Locations from

address FFFFOH through FFFFFH are reserved for
operations including a jump to the initial program
loading routine. Following RESET, the CPU will al-
ways begin execution at location FFFFOH where the
jump must be. Locations 00000H through 003FFH
are reserved for interrupt operations. Each of the
256 possible interrupt types has its service routine
pointed to by a 4-byte pointer element consisting of
a 16-bit segment address and a 16-bit offset ad-
dress. The pointer elements are assumed to have
been stored at the respective places in reserved
memory prior to occurrence of interrupts.

10

RESET BOOTSTRAP
PROGRAM JUMP

[]

INTERRUPT POINTER
FOR TYPE 255

[
r

-

INTERRUPT POINTER
FOR TYPE 1

INTERRUPT POINTER
FOR TYPE O

Fig.4 Reserved memory locations

FFFFFH

FFFFOH

3FFH

3FOH

7H

4H
3H

OH

