7. Microprocessor instruction set. Instruction format. Opcode and operand fields.
8. Addressing modes according to the way of the operand address forming.

When the 8088 executes an instruction, it performs the specified function on data. These
data called operands, reside in some of the following objects:
— in a part of the instruction;

— in one of the internal registers of the microprocessor;
— stored at an address in memory.

Next in the text the MOV (move data) instruction is used to describe the data-addressing
modes. The MOV instruction transfers bytes or words of data between registers or between
registers and memory in the 8086. In describing the program memory addressing modes, the
CALL and JMP instructions show how to modify the flow of the program.

The data addressing modes include register, immediate, direct, register indirect, base
plus index, register relative, and base relative plus index in the 8086 microprocessors. The
program memory addressing modes include program relative, direct and indirect. The

operation of the stack memory is explained for the specific instructions POP and PUSH.
Because the MOV instruction is common and flexible, it provides a basis for the explanation of

the data-addressing modes. Figure 3-1 illustrates the MOV instruction and defines the direction
of data flow. The source is to the right and the destination is to the left, next to the opcode MOV.
(An opcode or operation code tells the microprocessor which operation to perform.) This direc-
tion of flow, which is applied to all instructions, initially seems awkward. We naturally assume
that things move from left to right, where as here they move from right to left. Notice that a
comma always separates the destination from the source in an instruction. Also note that memory-
to-memory transfers are not allowed by any instruction except for the MOVS instruction.

In Figure 3-1, the MOV AX BX instruction transfers the word contents of the source reg-
ister (BX) into the destination register (AX). The source never changes, but the destination al-
most always changes.' It is essential to remember that a MOV instruction always copies the
source data into the destination. The MOV never actually picks up the data and moves it. Also
note that the flag register remains unaffected by most data transfer instructions.

FIGURE 3-1 The MOV in-

struction showing the source, MOV AX,BX
destination, and direction of
data flow T
. Source
Destination

Fig. 1 shows all possible variation of the data-addressing modes using the MOV
instruction. It helps to understand how each data-addressing mode is formulated with MOV
instruction and also serves as a reference. These are the same addressing modes found with all
version of the Intel microprocessors. The data-addressing modes are:

Register Transfers a copy of a byte or word from the source register or memory

addressing location to the destination register or memory location. (Example: the
MOV CX,DX instruction copies the word-sized contents of register
DX into register CX.) In the 80386 and above, a doubleword can be
transferred from the source register or memory location to the desti-
nation register or memory location. (Example: the MOV ECX,EDX
instruction copies the doubleword-sized contents of register EDX
into register ECX.)

Immediate
addressing

Direct
addressing

Register indirect
addressing

Base-plus-index
addressing

Register relative
addressing

Transfers the source-immediate byte or word of data into the destina-
tion register or memory location. (Example: the MOV AL,22H instruc-
tion copies a byte-sized 22H into register AL.) In the 80386 and above,

a doubleword of immediate data can be transferred into a register or
memory location. (Example: the MOV EBX,12345678H instruction
copies a doubleword-sized 12345678H into the 32-bit wide EBX register.)

Moves a byte or word between a memory location and a register. The

instruction set does not support a memory-to-memory transfer, except

for the MOVS instruction. (Example: the MOV CX,LIST instruction
copies the word-sized contents of memory location LIST into register
CX.) In the 80386 and above, a doubleword-sized memory location can
also be addressed. (Example: the MOV ESILIST instruction copies a
32-bit number, stored in four consecutive bytes of memory, from loca-
tion LIST into register ESL.)

Transfers a byte or word between a register and a memory location

addressed by an index or base register. The index and base registers are

BP, BX, DI, and SI. (Example: the MOV AX,[BX] instruction copies

the word-sized data from the data segment offset address indexed by

BX into register AX.) In the 80386 and above, a byte, word, or double-

word is transferred between a register and a memory location addressed

by any register: EAX, EBX, ECX, EDX, EBP, EDI, or ESI. (Example:

the MOV AL,[ECX] instruction loads AL from the data segment offset

address selected by the contents of ECX.)
Transfers a byte or word between a register and the memory location
addressed by a base register (BP or BX) plus an index register (DI or
SI). (Example: the MOV [BX+DI],CL instruction copies the byte-
sized contents of register CL into the data segment memory location
addressed by BX plus DL) In the 80386 and above, any register EAX,
EBX, ECX, EDX, EBP, EDI, or ESI may be combined to generate the
memory address. (Example: the MOV [EAX+EBX],CL instruction
copies the byte-sized contents of register CL into the data segment
memory location addressed by EAX plus EBX.)
Moves a byte or word between a register and the memory location
addressed by an index or base register plus a displacement. (Example:
MOV AX,[BX+4] or MOV AX,ARRAY[BX]. The first instruction
loads AX from the data segment address formed by BX plus 4. The
second instruction loads AX from the data segment memory location
in ARRAY plus the contents of BX.) The 80386 and above use any
register to address memory. (Example: MOV AX,[ECX+4] or MOV
AX,ARRAY[EBX]. The first instruction loads AX from the data seg-
ment address formed by ECX plus 4. The second instruction loads
AX from the data segment memory location ARRAY plus the con-
tents of EBX.)

Base relative-plus-

Transfers a byte or word between a register and the memory location

index addressing addressed by a base and an index register plus a displacement. (Example:
MOV AX,ARRAY[BX+DI] or MOV AX,[BX+DI+4]. These instruc-
tions both load AX from a data segment memory location. The first
instruction uses an address formed by adding ARRAY, BX, and DI;
the second, by adding BX, DI, and 4.) (An 80386 and above example:
MOV EAX,ARRAY[EBX+ECX] loads EAX from the data segment
memory location accessed by the sum of ARRAY, EBX, and ECX.)
Type Instruction Source Address Generation Destination
Register MOV AX,BX Register Register
BX AX
Immediate MOV CH,3AH i Register
Direct MOV [1234H],AX hogier Lo o DEWTINGDIER. . oo I
10000H + 1234H 11234H
Register indirect MOV [BX],CL Hogiaiis DS x 10H + BX Menmaey
10000H -+ 0300H 10300H
Base-plus-index MOV [BX+SI],BP Reger DS x 10H + BX + SI Menary
10000H + 0300H + 0200H 10500H
Register relative MOV CL,[BX+4] 2”;;‘;’;: DSx10H+BX + 4 Register
10304H 10000H + 0300H + 4 CL
Base relative-plus-index MOV ARRAY([BX+SI],DX Regixste’ | . DSx10H+ARRAY + BX+SI __ g‘gd“r’gg
10000H + 1000H + 0300H + 0200H 11500H

Fig. 1 8086/8088 Addressing modes

Register Addressing

Register addressing is the most common form of data addressing and, once the register names
are learned, is the easiest to apply. The microprocessor contains the following 8-bit registers
used with register addressing: AH, AL, BH, BL, CH, CL, DH, and DL. Also present are the fol-
lowing 16-bit registers: AX, BX, CX, DX, SP, BP, SI, and DI. In the 80386 and above, the ex-
tended 32-bit registers are EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI. With register
addressing, some MOV instructions and the PUSH and POP instructions also use the 16-bit seg-
ment registers (CS, ES, DS, SS, FS, and GS). It is important for instructions to use registers that
are the same size. Never mix an 8-bit register with a 16-bit register, an 8-bit register with a 32-bit
register, or a 16-bit register with 32-bit register, because this is not allowed by the micro-
processor and results in an error when assembled. This is even true when a MOV AX AL or a
MOV EAX AL instruction may seem to make sense. Of course, the MOV AX AL or MOV
EAX,AL instructions are not allowed, because these registers are of different sizes. Note that a
few instructions, such as SHL DX CL, are exceptions to this rule, as indicated in later chapters.
It is also important to note that none of the MOV instructions affect the flag bits.

Table 3—~1 shows many variations of register move instructions. It is impossible to show all
of the many possible combinations. For example, just the 8-bit subset of the MOV instruction
has 64 different variations. A segment-to-segment register MOV instruction is virtually the only
type of register MOV instruction not allowed. Also note that the code segment register may not
be changed by a MOV instruction, because the address of the next instruction is found in both
IP/EIP and CS. If only CS were changed, the address of the next instruction would be unpre-
dictable. Therefore, changing the CS register with a MOV instruction is not allowed.

TABLE 3-1 Examples of

the register-addressed Assembly Language Size Operation
instructions

MOV AL,BL 8-bits Copies BL into AL

MOV CH,CL 8-bits Copies CL into CH

MOV AX,CX 16-bits Copies CX into AX

MOV SP,BP 16-bits Copies BP into SP

MOV DS,AX 16-bits Copies AX into DS

MQV SI,DI 16-bits Copies Dl into SI

MOV BX,ES 16-bits Copies ES into BX

MOV ECX,EBX 32-bits Copies EBX into ECX

MOV ESP,EDX 32-bits Copies EDX into ESP

MO 7 ES,DS — Not allowed (segment-to-segment)

MOV BL,DX — Not allowed (mixed sizes)

MQV CS,AX — Not allowed (the code segment register

may not be the destination register)

Figure 3-3 shows the operation of the MOV BX,CX instruction. Note that the source reg-
ister’s contents do not change, but the destination register’s contents do change. This instruction
moves (copies) a 1234H from register CX into register BX. This erases the old contents (76AFH)
of register BX, but the contents of CX remain unchanged. The contents of the destination register

or destination memory location change for all instructions except the CMP and TEST instruc
tions. Note that the MOV BX,CX instruction does not affect the leftmost 16-bits of register EBX.

FIGURE 3-3 The effect of Register array
executing the MQV BX, CX
instruction at the point just EAX
before the BX register
changes. Note that only the
rightmost 16-bits of register
EBX change.

EBX 223 4 7 6 A F

ECX 11 AC 1 2 1 2 3 4

w
S

FIGURE 3-4 The operation Register array Program

of the MOV EAX,3456H in-

struction, This instruction EAX 83333 6 2 91 l MOV EAX,13456H
13456H

copies the immediate data EBX)

(13456H) into EAX.

Immediate Addressing

Another data-addressing mode is immediate addressing. The term immediate implies that the data
immediately follow the hexadecimal opcode in the memory. Also note that immediate data are
constant data, while the data transferred from a register are variable data. Immediate addressing
operates upon a byte or word of data. In the 80386 through the Pentium Pro microprocessors im-
mediate addressing also operates on doubleword data. The MOV immediate instruction transfers a
copy of the immediate data into a register or a memory location. Figure 3—4 shows the operation of
a MOV EAX,13456H instruction. This instruction copies the 13456H from the instruction, located
in the memory immediately following the hexadecimal opcode, into register EAX. As with the
MOV instruction illustrated in Figure 3-3, the source data overwrite the destination data.

Direct Addressing. Direct addressing, with a MOV instruction, transfers data between a mem-
ory location, located within the data segment, and the AL (8-bit), AX (16-bit), or EAX (32-bit)
register. A MOV instruction using this type of addressing is usually a 3-byte long instruction. (In
the 80386 and above, a register size prefix may appear before the instruction, causing it to ex-
ceed three bytes in length.)

The MOV AL.DATA instruction, as represented by most assemblers, loads AL from data
segment memory location DATA (1234H). Memory location DATA is a symbolic memory lo-
cation, while the 1234H is the actual hexadecimal location. With many assemblers, this instruc-
tion is represented as a MOV AL,[1234H] instruction.” The [1234H] is an absolute memory
location that is not allowed by all assembler programs. Note that this may need to be formed as
MOV AL,DS:[1234H] with some assemblers, to show that the alddress is in the data segment.
Figure 3-5 shows how this instruction transfers a copy of the byte-sized contents of memory lo-
cation 11234H into AL. The effective address is formed by adding 1234H (the offset address) to
10000H (the data segment address) in a system operating in the real mode.

Table 3-3 lists the three direct addressed instructions. These instructions often appear in
programs, so Intel decided to make them special 3-byte long instructions to reduce the length of
programs. All other instructions that move data from a memory location to a register, called dis-
placement addressed instructions, require four or more bytes of memory for storage in a program.

TABLE 3-3 Direct addressed instructions using EAX, AX and AL

Assembly Language Size Operation

MOV AL,NUMBER 8-bits Copies the byte contents of data segment memory
location NUMBER into AL

MOV AX,COW 16-bits Copies the word contents of data segment memory
location COW into AX

MOV EAX,WATER’ 32-bits Copies the doubleword contents of memory location
WATER into EAX

MOV NEWS, AL 8-bits Copies AL into data segment memory location NEWS

MOV THERE,AX 16-bits Copies AX into data segment memory location THERE

MOV HOME,EAX® 32-bits Copies EAX into data segment memory location HOME

Register Indirect Addressing

Register indirect addressing allows data to be addressed at any memory location through an offset
address held in any of the following registers: BP, BX, DI, and SI. For example, if register BX
contains a 1000H and the MOV AX,[BX] instruction executes, the word contents of data segment

offset address 1000H is copied into register AX. If the microprocessor is operated in the real mode

et P =l

and DS = 0100H, this instruction addresses a word stored at memory bytes 2000H and 2001H and
transfers it into register AX (see Figure 3-6). Note that the contents of 2000H are moved into AL
and the contents of 2001H are moved into’AH. The [] symbols denote indirect addressing in as-

sembly language.

TABLE 3-4 Examples of direct data addressing using a displacement

Assembly Language Size Operation
MOV CH,DOG 8-bits Copies the byte contents of data segment memory
location DOG into CH
MOV CH,[1000H] 8-bits Copies the byte contents of data segment offset address
1000H into CH
MOV ES,DATA6 16-bits Copies the word contents of data segment memory
location DATAG into ES
MOV DATA7,BP 16-bits Copies BP into data segment memory location DATA7
MOV NUMBER,SP 16-bits Copies SP into data segment memory location NUMBER
MOV DATA1,EAX 32-bits Copies EAX into data segment memory location DATA1
MOV EDI,SUM1 32-bits Copies the doubleword contents of data segment

memory location SUM1 into EDI

The data segment is used by default with register indirect addressing or any other addressing
mode that uses BX, DI, or SI to address memory. If register BP addresses memory, the stack seg-
ment is used by default. These are considered the default settings for these four index and base reg-

isters.

AX
BX

CX

Cs

DS

|
AH AL
3 4 1 2 \ﬂg\‘ 3 4
) -
10 © 9 [7000 ¥ 2000 12
T
w—"-—f -—-"’""_'-'—-’F—
1000
0100 -

Hh---h‘—‘ﬁ_““-ﬁmﬁ

_/f

00002002
00002001

00002000

00001002

00001001

00001000

FIGURE 3-6 The operation of the MOV AX,[BX] instruction when BX = 1000H and DS =
0100H. Note that this instruction is shown after the contents of memory are transferred to AX.

TABLE 3-5 Example of register indirect addressing

Assembly Language Size Operation

MOV CX,[BX] 16-bits Copies the wecrd contents of the data segment memory
location address by BX into CX

MQV [BP],DL* 8-bits Copies DL into the stack segment memory location
addressed by BP

MOV [DI],BH 8-bits Copies BH into the data segment memory location
addressed by Di

MOV [DI],[BX] — Memaory-to-memory moves are not allowed except with

string instructions

Indirect addressing often allows a program to refer to tabular data located in the memory
system. For example, suppose that you must create a table of information that contains 50 sam-
ples taken from memory location 0000:046C. Location (}UUD 046C contains a counter that is
maintained by the personal computer’s real-time clock. Fl{rure 3-7 shows the table and the BX
register used to address each location in the table sequentially. To accomplish this task, load the
starting location of the table into the BX register with a MOV immediate instruction, After ini-
tializing the starting address of the table, use register indirect addressing to store the 50 samples

sequentially.

Memory
FIGURE 3-7 An array ~ |
(TABLE) containing 50 bytes
that are indirectly addressed
through register BX Table + 49
| —
]
Table + 2
Table + 1
BX|] TABLE . Table
"‘"'—“‘-—-"__

Base-Plus-Index Addressing

Base-plus-index addressing is similar to indirect addressing because it indirectly addresses
memory data. In the 8086 through the 80286, this type of addressing uses one base register (BP
or BX) and one index register (DI or SI) to indirectly address memory. The base register often
holds the beginning location of a memory array, while the index register holds the relative posi-
tion of an element in the array. Remember that whenever BP addresses memory data, both the
stack segment register and BP generate the effective address.

Locating Data with Base-plus-index Addressing. Figure 3-8 shows how data are addressed by
. the MOV DX, [BX+DI] instruction when the microprocessor operates in the real mode. In this
example, BX = 1000H, DI = 0010H, and DS = 0100H, which translate into memory address
02010H. This instruction transfers a copy of the word from location 02010H into the DX reg-
ister. Table 3-6 lists some instructions used for base-plus-index addressing. Note that the Intel
assembler requires that this addressing mode appear as [BX][DI] instead of [BX+DI]. The MOV
DX,[BX+DI] instruction is MOV DX,[BX][DI] for a program written for the Intel ASM assem-
bler. This text uses the first form in all example programs, but the second form can be used in
many assemblers, including MASM from Microsoft.

Locating Array Data Using Base-plus-index Addressing. A major use of the base-plus-index ad-
dressing mode is to address elements in a memory array. Suppose that the elements in an array

located in the data segment at memory location ARRAY must be accessed. To accomplish this,
load the BX register (base) with the beginning address of the array and the DI register (index)
with the element number to be accessed. Figure 3-9 shows the use of BX and DI to access an el-
ement in an array of data.

Memory
"h—f__'_’-l

02015H
AX

02014H
Bx] 10 joo 02013H
cx 02012H

L— | A B 02011H
x| AB |03 Y—"150s
\l 0 3 02010H ~—

0200FH
SP \-“‘-'—_..—
BP

1000H
sl
0010H ¥ _ 2010H
DI
co1ro 0101 F
1000H
DS x 10H

FIGURE 3-8 An example showing how the base-plus-index addressing mode functions for the MOV DX [BX+DlI]
instruction. Notice that memory address 02010H is accessed because DS = 0100H, BX = 100H, and DI = 0010H.

TABLE 3-6 Examples of base-plus-index addressing

Assembly Language Size Operation

MOV CX,[BX+DI] 16-bits Copies the word contents of the data segment memory
location address by BX plus Dl into CX

MOV CH,[BP+Sl] 8-bits Copies the byte contents of the stack segment memory
location addressed by BP plus Sl into CH

MOV [BX+SI],SP 16-bits Copies SP into the data segment memory location
addresses by BX plus Sl

MOV [BP+DI],AH 8-bits Copies AH into the stack segment memory location

addressed by BP plus DI

Register Relative Addressing

Register relative addressing is similar to base-plus-index addressing and displacement ad-
dressing. In register relative addressing, the data in a segment of memory are addressed by
adding the displacement to the contents of a base or an index register (BP, BX, DI, or SI).
Figure 3-10 shows the operation of the MOV AX,[BX+1000H] instruction. In this example,
BX = 0100H and DS = 0200H, so the address generated is the sum of DS x 10H, BX, and the

displacement of 1000H or 03100H. Remember that BX, DI, or SI address the data segment and
BP addresses the stack segment. In the 80386 and above, the displacement can be a 32-bit
number and the register can be any 32-bit register except the ESP register. Remember that the
size of a real mode segment is 64K bytes long. Table 3-7 lists a few instructions that use reg-
ister relative addressing.

TABLE 3-7 Examples of register relative addressing

Assembly Language Size Operation

MOV AX,[DI+100H] 16-bits Copies the word contents of the data segment memory location
addressed by DI plus 100H into AX

MOV ARRAYISI],BL 8-bits Copies BL into the data segment memory location addressed by
ARRAY plus SI

MOV LIST[SI+2],CL 8-bits Copies CL into the data segment memory location addressed by
sum of LIST, SI, and 2

MOV DI,SET_IT[BX] 16-bits Copies the word contents of the data segment memory location

addressed by the sum of SET_IT and BX into DI

The displacement can be a number added to the register within the [], as in MOV
AL,[DI+2], or it can be a displacement subtracted from the register, as in MOV AL,[SI-1]. A
displacement also can be an offset address appended to the front of the [], as in MOV
AL,DATAIDI]. Both forms of displacements also can appear simultaneously, as in MOV
AL,DATAI[DI+3]. In all cases, both forms of the displacement add to the base or base and index
register within the []. In the 8086-80286 microprocessors, the value of the displacement is lim-
ited to a 16-bit signed number with a value ranging between +32,767 (7FFFH) and -32,768
(8000H);

Addressing Array Data with Register Relative Addressing. It is possible to address array data with
register relative addressing such as one does with base-plus-index addressing. In Figure 3-11,
register relative addressing is illustrated with the same example as for base-plus-index ad-
dressing. This shows how the displacement ARRAY adds to index register DI to generate a ref-
erence to an array element.

Memory
/—-—-_.__,_,--'_"-_

ARRBAY + 6
ARRAY + 5
ARRAY + 4
Element ARRAY + 3
Displacement ARRAY + 2
ARRAY + 1
ARRAY

ARRAY

M

FIGURE 3—-11 Register relative addressing used to address an element of ARRAY. The dis-
placement addresses the start of ARRAY, and DI accesses an element.

Base Relative-Plus-Index Addressing

The base relative-plus-index addressing mode is similar to the base-plus-index addressing mode,
but adds a displacement besides using a base register and an index register to form the memory
address. This type of addressing mode often addresses a two-dimensional array of memory data.

Addressing Data with Base Relative-plus-index Addressing. Base relative-plus-index addressing
is the least-used addressing mode. Figure 3—12 shows how data are referenced if the instruction
executed by the microprocessor is a MOV AX,[BX+SI+100H]. The displacement of 100H adds
to BX and SI to form the offset address within the data segment. Registers BX = 0020H, SI =
0010H, and DS = 1000H, so the effective address for this instruction is 10130H—the sum of
these registers plus a displacement of 100H. This addressing mode is too complex for frequent
use in a program. Some typical instructions using base relative-plus-index addressing appear in
Table 3-8. Note that with the 80386 and above, the effective address is generated by the sum of
two 32-bit registers plus a 32-bit displacement.

Memory
. T ——
Register array /I
A3 10131H
EAX A3|16 A316 -
N 16 10130H =
EBX 00j20
ECX
EDX
ESP 0020H
EBP
y 0030H 0130H
ES 0010 ——aGH—GO—(—
Q010H 10130H
— 10000H

0100H ps x 10H

FIGURE 3-12 An example of base relative-plus-index addressing using a MOV AX,[BX+SI+100H]
instruction. Note: DS = 1000H.

TABLE 3-8 Example base relative-plus-index instructions

Assembly Language Size Operation

MOV DH,[BX+DI+20H] 8-bits Copies the byte contents of the data segment memory location
addressed by the sum of BX, DI, and 20H into DH

MOV AX,FILE[BX+DI] 16-bits Copies the word contents of the data segment memory location
addressed by the sum of FILE, BX, and DI into AX

MOV LIST[BP+DI],CL 8-bits Copies CL into the stack segment memory location addressed
by the sum of LIST, BP, and DI

MOV LIST[BP+SI+4],DH 8-bits Copies DH into the stack segment memory location addressed

by the sum of LIST, BP, SI, and 4

Addressing Arrays with Base Relative-plus-index Addresssing. Suppose that a file of many
records exists in memory and each record contains many elements. This displacement addresses
the file, the base register addresses a record, and the index register addresses an element of a
record. Figure 3-13 illustrates this very complex form of addressing.

FIGURE 3-13 Base rela- Memory
tive-plus-index addressing
used to access a FILE that
contains multiple records

(REC) |
D _Element
REC C

T

REC B

i REC A

Displacement

[FILE i L

PROGRAM MEMORY-ADDRESSING MODES

Program memory-addressing modes, used with the JMP and CALL instructions, consist of three
distinct forms: direct, relative, and indirect. This section introduces these three addressing forms,
using the JMP instruction to illustrate their operation.

Direct Program Memory Addressing

. Direct program memory addressing is what many early microprocessors used for all jumps and
calls. Direct program memory addressing is also used in high-level languages, such as the
BASIC language GOTO and GOSUB instructions. The microprocessor uses this form of ad-
dressing, but not as often as relative and indirect program memory addressing are used.

The instructions for direct program memory addressing store the address with the opcode.
For example, if a program jumps to memory location 10000H for the next instruction, the address
(10000H) is stored following the opcode in the memory. Figure 3-14 shows the direct interseg-
ment JMP instruction and the four bytes required to store the address 10000H. This JMP instruc-
tion loads CS with 1000H and IP with O000H to jump to memory location 10000H for the next
instruction. (An intersegment jump is a jump to any memory location within the entire memory
system.) The direct jump is often called a far jump because it can jump to any memory location
for the next instruction. In the real mode, a far jump accesses any location within the first IM byte
of memory by changing both CS and IP.

FIGURE 3-14 The 5-byte Opcode Offset (low) Offset (high) Segment (low) Segment (high)
machine language version of
a JMP [10000H] instruction

E A 00 00 00 10

The only other instruction that uses direct program addressing is the intersegment or far
CALL instruction. Usually. the name of a memory address, called a label, refers to the location
that is called or jumped to instead of the actual numeric address. When using a label with the
CALL or JMP instruction, most assemblers select the best form of program addressing.

Relative Program Memory Addressing

Relative program memory addressing is not available in all early microprocessors, but it is
available to the Intel family of microprocessors. The term relative means “relative to the in-
struction pointer (IP).” For example, if a JMP instruction skips the next two bytes of memory,
the address in relation to the instruction pointer is a 2 that adds to the instruction pointer. This
develops the address of the next program instruction. An example of the relative JMP instruc-
tion is shown in Figure 3—15. Notice that the JMP instruction is a one-byte instruction with a
one-byte or a two-byte displacement that adds to the instruction pointer. A one-byte displace-
ment is used in short jumps, and a two-byte displacement is used in near jumps and calls. Both
types are considered intrasegment jumps. (An intrasegment jump is a jump anywhere within
the current code segment.)

Relative JMP and CALL instructions contain either an 8-bit or a 16-bit signed displace-
ment that allows a forward memory reference or a reverse memory reference.

All assemblers automatically calculate the dis-
tance for the displacement and select the proper one-, two- or, four-byte form. If the distance is
too far for a two-byte displacement in the 8086 through 80286 microprocessors, some assem-
blers use the direct jump. An 8-bit displacement (short) has a jump range of between +127 and
—-128 bytes from the next instruction, while a 16-bit displacement (near) has a range of £32K
bytes.

Indirect Program Memory Addressing

The microprocessor allows several forms of indirect program memory addressing for the JMP
and CALL instructions. Table 310 lists some acceptable indirect program jump instructions,
which can use any 16-bit register (AX, BX, CX, DX, SP, BP, DI, or SI), any relative register
([BP), [BX], [D11, or [SI]), and any relative register with a displacement.

If a 16-bit register holds the address of a JMP instruction, the jump is near. For example, if
the BX register contains a 1000H and a JMP BX instruction executes, the microprocessor jumps
to offset address 1000H in the current code segment.

If a relative register holds the address, the jump is also considered an indirect jump. For ex-
ample, a JMP [BX] instruction refers to memory location within the data segment at the off-
set address contained in BX. At this offset address is a 16-bit number that is used as the offset
address in the intrasegment jump. This type of jump is sometimes called an indirect-indirect or
double-indirect jump.

TABLE 3-10 Examples of indirect program memory addressing

Assembly Language Operation

JMP AX Jumps to the current code segment location addressed by the contents of AX

JMP CX Jumps to the current code segment location addressed by the contents of CX

JMP NEAR PTR [BX] Jumps to the current code segment location addressed by the contents of the data
segment memory location addressed by BX

JMP NEAR PTR[DI+2] Jumps to the current code segment location addressed by the contents of the data
segment memory location addressed by DI plus 2

JMP TABLE[BX] Jumps to the current code segment location addressed by the contents of the data

segment memory location addressed by TABLE plus BX

Converting Assembly Language Instructions to Machine Code

OPCODE D | W | MOD REG R/M

Z A _ -
~ N

An instruction can be coded with 1 to 6 bytes.

Byte 1 contains three kinds of information:
—Opcodefield (6 bits) specifies the operation such as add, subtract, or move
—Register Direction Bit (D bit)
It tells the register operand in REG field in byte 2 is source or destination operand:
—1:Data flow to the REG field from R/M
—0: Data flow from the REG field to the R/M
—Data Size Bit (W bit)
It specifies whether the operation will be performed on 8-bit or 16-bit data
—0: 8 bits
—1: 16 bits
Byte 2 has two fields:
—Mode field (MOD) -2 bits
—Register field (REG) -3 bits
—Register/memory field (R/M field) —2 bits

e REG field is used to identify the register for the first operand.

REG w=0 W=1
000 AL AX
001 cL cX
010 DL DX
011 BL BX
100 AH sP
101 CH BP
110 DH s

111 BH DI

e 2-bit MOD field and 3-bit R/M field together specify the second operand

CODE EXPLANATION

00 Memory Mode, no displacement
follows*®

01 Memory Mode, 8-bit
displacement follows

10 Memory Mode, 16-bil
displacement follows

1 Register Mode (no
displacement)

*Except when R/M = 110, then 16-bit
displacement follows

MOD =11 EFFECTIVE ADDRESS CALCULATION
R/M W=0 W=1 R/M MOD=00 MOD =01 MOD=10
000 AL AX 000 | (BX)+(SI) (BX)+(SI)+ D8 (BX)+(Sh)+D16
001 CL CcX 001 | (BX)+(DI) (BX)+ (DI) + D8 (BX)+(DI) + D16
010 DL DX 010 | (BP)+(SI) (BP)+(SI)+ D8 (BP)+(Sh +D16
011 BL BX 011 | (BP)+(DI) (BP) +(DI)+ D8 (BP)+(DI) + D16
100 AH SP 100 | (S)) (S)+ D8 (S)+ D16
101 CH BP 101 | (D) (D1)+ D8 (D) + D16
110 OH Sl 110 | DIRECT ADDRESS (BP)+ D8 (BP)+D16
m BH DI 111 | (BX) (BX)+ D8 (BX)+ D16

Summary of addressing modes

!aaressmg wloae Bperana Belau" gegmen!

Register Reg None
Immediate Data None
Direct [offset] DS
Register Indirect | [BX] DS
[S1] DS
[DI] DS
Based Relative [BX]+disp DS
[BP]+disp SS
Indexed Relative | [DI]+disp DS
[SI]+disp DS
Based Indexed [BX][SI or DI]+disp | DS
Relative [BP][SI or DI]+disp | SS

16 bit Segment Assignments

Registers

Offset P SI,DI,BX SI,DI,BX SP,BP
Register

Type of Default Alternate Offset
Memory Segment Segment

Reference

Instruction Fetch | CS none IP

Stack S5 none SP,BP
Operations

General Data DS CS,ES,SS BX, address
String Source DS CS,ES,SS Sl, DI, address
String ES None DI
Destination

