
6. Interrupt system. Interrupt table. Interrupt Acknowledge sequence.

An interrupt is a hardware-initiated procedure that interrupts whatever program is

currently executed. Interrupts are particularly useful when interfacing I/O devices that provide

or require data at relatively low data transfer rate.

An interrupt is used to cause a temporary halt in the execution of program.

 The meaning of „interrupts‟ is to break the sequence of operations.

 While the Microprocessor is executing a program, an „interrupt‟ breaks the

normal sequence of execution of instructions, diverts its execution to some other

program called Interrupt Service Routine (ISR).

 After executing ISR, IRET returns the control back again to the main program.

Interrupt processing is an alternative to polling. For example, getting the code,

generated by the keyboard, when the user pushes a button, can be made by 2 ways:

-Polling :- The CPU executes a program that checks for the available of data, If a key is

pressed, it reads the data, otherwise keep waiting or looping;

-Interrupt:-

The processor executes another program (main), when a key is pressed. The Keyboard

generates an interrupt. The CPU will response to the interrupt and will read the data from

keyboard. After that it returns to the original program. So by proper use of interrupt, the CPU

can serve many devices “simultaneously”.

Fig. 11-1 A time line that indicates interrupt usage in a typical system

If an interrupt has been requested, the 8086 Microprocessor processes it by performing

the following series of steps (fig. 2):

1. Pushes the content of the flag register onto the stack to preserve the status of the

interrupt (IF) and trap flags (TF)

2. Disables the INTR interrupt by clearing IF in the flag register

3. Resets TF in the flag register, to disable the single step or trap interrupt

4. Pushes the content of the code segment (CS) register onto the stack

5. Pushes the content of the instruction pointer (IP) onto the stack

6. Performs an indirect far jump to the start of the interrupt service routine (ISR),

corresponding to the received interrupt.

Fig. 2 8086 microprocessor interrupt processing

Interrupt types

Three types of interrupts sources are there (fig. 3):

1. An external signal applied to NMI or INTR input pin(hardware interrupt)

2. Execution of Interrupt instruction(software interrupt)

3. Interrupt raised due to some error condition produced in 8086 instruction execution

process. (Divide by zero, overflow errors, etc)

Fig. 3 Types of Interrupts, depending on their source

Vector Table occupies location 00000H to 0003FFh of the system memory. It contains

the code segment (CS) and Instruction Pointer (IP) for each kind of interrupt.

Fig. 11-2 (a) The interrupt vector table, and (b) the contents of interrupt vector

Interrupt flags bits

The interrupt flag (IF) and the trap flag (TF) are both cleared after the contents of the

flag register are stacked during an interrupt. When the IF bit is set, it allows the INTR pin to

cause an interrupt, and

interrupt whenever AC power drops out, for example.

