6. Interrupt system. Interrupt table. Interrupt Acknowledge sequence.

An interrupt is a hardware-initiated procedure that interrupts whatever program is
currently executed. Interrupts are particularly useful when interfacing 1/O devices that provide
or require data at relatively low data transfer rate.

An interrupt is used to cause a temporary halt in the execution of program.

* The meaning of ‘interrupts’ is to break the sequence of operations.

= While the Microprocessor is executing a program, an ‘interrupt’ breaks the
normal sequence of execution of instructions, diverts its execution to some other
program called Interrupt Service Routine (ISR).

= After executing ISR, IRET returns the control back again to the main program.

Interrupt processing is an alternative to polling. For example, getting the code,
generated by the keyboard, when the user pushes a button, can be made by 2 ways:

-Polling :- The CPU executes a program that checks for the available of data, If a key is
pressed, it reads the data, otherwise keep waiting or looping;

-Interrupt:-

The processor executes another program (main), when a key is pressed. The Keyboard
generates an interrupt. The CPU will response to the interrupt and will read the data from
keyboard. After that it returns to the original program. So by proper use of interrupt, the CPU

can serve many devices “simultanecously”.
Unlike the polling technique, interrupt processing allows the microprocessor to execule

other software while the keyboard operator is thinking about what key to type next. As soonas a
key is pressed, the keyboard encoder de-bounces the switch and puts out one pulse that interrupts
the microprocessor. In this way, the microprocessor executes other software until the key is ac-
tually pressed when it reads a key and returns to the program that was interrupted. As a result, the
microprocessor can print reports or complete any other task while the operator is typing a docu-
ment and thinking about what to type next.

Keyboard interrupt Printer interrupt Keyboard interrupt

Main program

Vi

o e
VI
A

Printer interrupt

Fig. 11-1 A time line that indicates interrupt usage in a typical system

Figure 11—1 shows a time line that indicates a typist typing data on a keyboard, a printer
removing data from the memory, and a program executing. The program is the main program
that is interrupted for each keystroke and each character that is to print on the printer. Note that
the keyboard interrupt service procedure, called by the keyboard interrupt, and the printer inter-
rupt service procedure each take little time to execute.

If an interrupt has been requested, the 8086 Microprocessor processes it by performing
the following series of steps (fig. 2):

1. Pushes the content of the flag register onto the stack to preserve the status of the

interrupt (IF) and trap flags (TF)

2. Disables the INTR interrupt by clearing IF in the flag register

3. Resets TF in the flag register, to disable the single step or trap interrupt

4. Pushes the content of the code segment (CS) register onto the stack

5. Pushes the content of the instruction pointer (IP) onto the stack
6. Performs an indirect far jump to the start of the interrupt service routine (ISR),
corresponding to the received interrupt.

E "roce Ssingof an Interruptby the 8086w ===

/Main P ”OgraID Push flags register Interrupt Service
/ Clear IF and TF Routine (ISR)
Push CS and IP
/ Load CSand IP
Interrupt program

Interrupt — \

Pop IP and CS

Pop flags register
N :
N IRET

Fig. 2 8086 microprocessor interrupt processing

Interrupt types

Three types of interrupts sources are there (fig. 3):

1. An external signal applied to NMI or INTR input pin(hardware interrupt)

2. Execution of Interrupt instruction(software interrupt)

3. Interrupt raised due to some error condition produced in 8086 instruction execution
process. (Divide by zero, overflow errors, etc)

s Interrupts =

|
Hardware Software Interrupts
Interrupts : INTn
!
|] |
Maskable Nonmaskable 256 Types of
Interrupts Interrupts software Interrupts
—[— : —!ﬁ INT 00 to INT FF
The programmer The programmer cannot

can choose to mask control when a non maskable
specific interrupts nterrupt is served

and re-enable them 1

later

The processor has to stop
the main program to execute
the NMI Service Routine.

Fig. 3 Types of Interrupts, depending on their source

Vector Table occupies location 00000H to 0003FFh of the system memory. It contains
the code segment (CS) and Instruction Pointer (IP) for each kind of interrupt.

Figure 11-2 illustrates the interrupt vector table for the microprocessor. The first five in-
terrupt vectors are identical in all Intel microprocessor family members from the 8086 to the
Pentium. Other interrupt vectors exist for the 80286 that are upward compatible to the 80386,
80486 and Pentium/Pentium Pro, but not downward compatible to the 8086 or 8088. Intel re-
serves the first 32 interrupt vectors for their use in various microprocessor family members. The
last 224 vectors are available as user interrupt vectors, Each vector is four bytes long and con-
tains the starting address of the interrupt service procedure. The first two bytes of the vector
contain the offset address, and the last two bytes contain the segment address.

The following list describes the function of each dedicated interrupt in the microprocessor:

Type 0 Divide Error—Occurs whenever the result of a division overtlows or whenever
an attempt is made to divide by zero.
Type 1 Single-Step or Trap—Occurs after the execution of each instruction if the trap

(TF) flag bit is set. Upon accepting this interrupt, the TF-bit is cleared so that the

Type 2 Non-maskable Hardware Interrupt—A result of placing a logic 1 on the NMI
input pin to the microprocessor. This input is non-maskable, which means that it
cannot be disabled.

Type 3 One-Byte Interrupt—A special I-byte instruction (INT 3) that uses this vector to
access its interrupt service procedure. The INT 3 instruction is often used to store
a breakpoint in a program for debugging.

Type 4 Overflow—A special vector used with the INTO instruction. The INTO instruc-
tion interrupts the program if an overflow condition exists, as reflected by the
overflow flag (OF).

The INTO instruction checks the overflow flag (OF). If OF = 1, the INTO instruction calls
the procedure whose address is stored in interrupt vector type number 4. If OF = (, then the INTO
instruction performs no operation and the next sequential instruction in the program executes,

The INT n instruction calls the interrupt service procedure that begins at the address repre-
sented in vector number n. For example, an INT 80H or INT 128 call the interrupt service proce-
dure whose address is stored in vector type number 80H (000200H-00203H). To determine the
vector address, just multiply the vector type number (n) by 4. This gives the beginning address of
the 4-byte long interrupt vector. For example, an INT 5 =4 x 5 or 20 (14H). The vector for INT
5 begins at address 000014H and continues to 000017H. Each INT instruction is stored in two
bytes of memory with the first byte containing the opcode and the second the interrupt type
number. The only exception to this is the INT 3 instruction, a 1-byte instruction. The INT 3 in-
struction is often used as a breakpoint interrupt because it is easy to insert a 1-byte instruction
into a program. Breakpoints are often used to debug faulty software.

The IRET instruction is a special return instruction used to return for both software and
hardware interrupts. The IRET instruction is much like a normal far RET, because it retrieves the
return address from the stack. It is unlike the normal return because it also retrieves a copy of the
flag register from the stack. An IRET instruction removes six bytes from the stack: two for the
1P, two for the CS, and two for the flags.

P—

‘-—--""-..-__"__-.‘.--_—-

Type 32 — 255
User interrupt vectors

osoH
Type 14 — 31
Reserved

-_--'"-____"'_'."-__—.
‘-—-'-"...-___F.-.-_—_

014H

Type 4
Overflow (INTO)

Type 3

00CH 1-byte breakpoint
Type 2 Any interrupt vector
NMI pin

Type 1
Single-step

010H

0osH Segment (high)

Segment (low)
Offset (high)
Offset (low)

(a) (b)
Fig. 11-2 (a) The interrupt vector table, and (b) the contents of interrupt vector

Type 0
Divide error

o = M W

000H

When the microprocessor completes executing the current instruction, it determines whether an
interrupt is active by checking (1) instruction executions, (2) single-step, (3) NMI, (4) co-
processor segment overrun, (5) INTR, and (6) INT instruction in the order presented. If one or
more of these interrupt conditions are present, the following sequence of events occurs:

1. The contents of the flag register are pushed onto the stack.

2. Both the interrupt (IF) and trap (TF) flags are cleared. This disables the INTR pin and also the
trap or single-step feature.

3. The contents of the code segment register (CS) are pushed onto the stack.

4. The contents of the instruction pointer (IP) are pushed onto the stack.

5. The interrupt vector contents are fetched and placed into both IP and CS so that the next in-
struction executes at the interrupt service procedure addressed by the vector.

Whenever an interrupt is accepted, the microprocessor stacks the contents of the flag reg-
ister, CS and IP; clears both IF and TF; and jumps to the procedure addressed by the interrupt
vector. After the [lugs are pushed onto the stack, IF and TF are cleared. These flags are returned

to the state prior to the interrupt when the IRET instruction is encountered at the end of the in-
terrupt service procedure. Therefore, if interrupts were enabled prior to the interrupt service pro-
cedure, they are automatically re-enabled by the IRET instruction at the end of the procedure.

The return address (in CS and IP) is pushed onto the stack during the interrupt. Sometimes
the r<turn address points to the next instruction in the program, and sometimes it points to the in-
struction or point in the program where the interrupt occurred.

Interrupt flags bits

The interrupt flag (IF) and the trap flag (TF) are both cleared after the contents of the
flag register are stacked during an interrupt. When the IF bit is set, it allows the INTR pin to
cause an interrupt, and

when the IF-bit is cleared, it prevents the INTR pin from causing an interrupt. When TF = 1, it
causes a trap interrupt (type number 1) to occur after each instruction executes, This is why we
often call trap a single-step. When TF = (), normal program execution occurs. This flag bit allows
debugging, as explained in later chapters that detail the 808386-Pentium Pro.

The interrupt flag is set and cleared by the STI and CLI instructions respectively. There are
no special instructions that set or clear the trap flag.

HARDWARE INTERRUPTS

The microprocessor has two hardware interrupt inputs: non-maskable interrupt (NMI) and inter-
rupt request (INTR). Whenever the NMI input is activated, a type 2 interrupt occurs because NMI
is internally decoded. The INTR input must be externally decoded to select a vector. Any interrupt
vector can be chosen for the INTR pin, but we usually use an interrupt type number between 20H
and FFH. The INTA signal is also an interrupt pin on the microprocessor, but it is an output that is
used in response to the INTR input to apply a vector type number to the data bus connections
D7-D0. Figure 11-5 shows the three user interrupt connections on the microprocessor.

The non-maskable interrupt (NMI) is an edge-triggered input that requests an interrupt
on the positive edge (0-10-1 transition). After a positive edge, the NMI pin must remain a logic 1
until it is recognized by the microprocessor. Note that before the positive edge is recognized, the
INMI pin must be a logic O for at least two clocking periods.

The NMI input is often used for parity errors and other major system faults such as power
failures. Power failures are easily detected by monitoring the AC power line and causing an NMI

~—~

FIGURE 11-5 The interrupt
pins on all versions of the

Intel microprocessor
NMI f—--—

[nterrupt iny
INTR J—— prnp

INTA o——————— Interrupt out

N

interrupt whenever AC power drops out, for example.

INTR and INTA

The interrupt request input (INTR) is level-sensitive, which means that it must be held at a
logic 1 level until it is recognized. The INTR pin is set by an external event and cleared inside the
interrupt service procedure. This input is automatically disabled once it is accepted by the mi-
croprocessor and re-enabled by the IRET instruction at the end of the interrupt service proce-
dure. The 80386-Pentium Pro use the IRETD instruction in the protected mode of operation.
The microprocessor responds to the INTR input by pulsing the INTA output in anticipa-
tion of receiving an interrupt vector type number on data bus connection D,-D,, Figure 11-8
shows the timing diagram for the INTR and INTA pins of the microprocessor. There are two
INTA pulses generated by the system that are used to insert the vector type number on the data

bus. o
INTR ——/
INTA \ /
LOCK h /
INTA W
o i
* Vectar number
FIGURE 11-8 The timing of the INTR input and INTA output. *Note: This portion of the data
bus is ignored and usually contains the vector number.
SUMMARY

1. An interrupt is a hardware- or software-initiated call that interrupts the currently executing
program at any point and calls a procedure. The procedure is called by the interrupt handler
or an interrupt service procedure.

2. Interrupts are useful when an I/O device needs to be serviced only occasionally at low data
transfer rates.

3. The microprocessor has five instructions that apply to interrupts: BOUND, INT, INT 3,
INTO, and IRET. The INT and INT 3 instructions call procedures with addresses stored in
interrupt vector whose type is indicated by the instruction. The BOUND nstruction is a con-
ditional interrupt that uses interrupt vector type number 5. The INTO instruction is a condi-
tional interrupt that interrupts a program only if the overflow flag is set. Finally, the IRET
instruction is used to return from interrupt service procedures.

4. The microprocessor has three pins that apply to its hardware interrupt structure: INTR, NMI,
and INTA. The interrupt inputs are INTR and NMI, which are used to request interrupts.
INTA is an output used to acknowledge the INTR interrupt request.

5. Real mode interrupts are referenced through a vector table that occupies memory locations
00000H-003FFH. Each interrupt vector is four bytes long and contains the offset and seg-
ment addresses of the interrupt service procedure. In protected mode, the interrupts refer-
ence the interrupt descriptor table (IDT) that contains 256 interrupt descriptors. Each
interrupt descriptor contains a segment selector and a 32-bit offset address.

. Two flag bits are used with the interrupt structure of the microprocessor: trap (TF) and in-

terrupt enable (IF). The IF flag bit enables the INTR interrupt input, and the TF flag bit
causes interrupts to occur after the execution of each instruction as long as TF is active.

. The first 32 interrupt vector locations are reserved for Intel use, with many predefined in the

microprocessor. The last 224 interrupt vectors are for user use and can perform any function
desired.

-Whenever an interrupt is detected, the following events occur: (1) the flags are pushed onto

the stack, (2) the IF and TF flag bits are both cleared, (3) the IP and CS registers are both
pushed onto the stack, and (4) the interrupt vector is fetched from the interrupt vector table
and the interrupt service subroutine is accessed through the vector address.

. Tracing or single-stepping is accomplished by setting the TF flag bit. This causes an inter-

rupt to occur after the execution of each instruction for debugging.
The non-maskable interrupt input (NMI) calls the procedure whose address is stored at in-
terrupt vector type number 2. This input is positive-edge triggered.

. The INTR pin is not internally decoded as is the NMI pin. Instead, INTA is used to apply the

interrupt vector type number to data bus connections D;~D, during the INTA pulse.

. Methods of applying the interrupt vector type number to the data bus during INTA vary

widely. One method uses resistors to apply interrupt type number FFH to the data bus, while
another uses a three-state buffer to apply any vector type number.

